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In various single-molecule experiments, a chiral polymer, such as DNA, is simultaneously pulled and

twisted. We address an elementary but fundamental question raised by various authors: does the molecule

overwind or unwind under tension? We show that within the context of the classic Kirchhoff-Love rod

model of elastic filaments, both behaviors are possible, depending on the precise constitutive relations of

the polymer. More generally, our analysis provides an effective linear response theory for helical

structures that relates axial force and axial torque to axial translation and rotation.
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Single-molecule tweezer experiments have revealed
many fascinating behaviors, some of which have been
reported as counterintuitive. For instance, two different
groups [1,2] measured the twist response of a single mole-
cule of DNA when pulled by optical tweezers. In these
beautiful experiments, a bead attached to the DNA is
pulled by optical tweezers and the angular displacement
is controlled via an applied torque. The experimental
observations are that the DNA overwinds when pulled
and extends when overwound. Both groups describe these
behaviors as surprising: ‘‘simple intuition suggests that
DNA should unwind under tension’’ [1], and ‘‘DNA should
lengthen as it is unwound’’ [2]. We shall explain that the
experimentally observed microscopic response is not par-
ticular to DNA and is in fact generic for most macroscopic
helical elastic filaments. The behavior is captured by a
simple 19th century model of helical wire confirmed ex-
perimentally more than a century ago [3,4].

Confusion on the sign of rotation also arises in the
problem of growth of stems and roots where cell wall
anisotropy is responsible for the overall handedness that
is observed. A typical argument is that the cell wall is a
cylindrical structure with reinforced, say, right-handed
helical microfibrils, that rotates clockwise during growth
(viewed from the top) [5,6], therefore unwinding, as
expected, because ‘‘helices unwind when they are
stretched’’ [7]. This explanation of handedness is again
falsidical.

Before proceeding with our analysis, we discuss a pos-
sible rationale underlying the intuition in the above cita-
tions. If helical DNA or a plant is modeled by an elastic
cylinder which remains cylindrical while stretched and
twisted, then the simplest elastic energy [1,8,9] associated
with deformations from the unstressed reference state is

E ¼ 1

2
ðA�2 þ 2B�zþ Cz2Þ; (1)

where z ¼ ðL1 � L0Þ=L0 is the axial stretch (L0 and L1

being the initial and observed contour lengths), and � is the
rotational displacement of the end. The requirement that the
energy be positive definite (A > 0, C> 0, AC�B2>0)
implies that a pure tension extends the spring and a pure
axial torque twists the spring in the same direction, as
expected. However, we show that, depending on the sign
of B, the cylinder will either overwind or underwind when
stretched at zero torque.
Further, experiments observe nonmonotonic behaviors

at different loading regimes, which is not possible if the
coefficients are constants. A nonlinear theory of rods is
needed to derive the correct form of these energy functions.
The classic literature on helical rods concerns mostly the

study of uniform helical metal springs with a circular cross
section, cf. Fig. 1. Such systems were studied by Thomson
and Tait (in Ref. [10], Sec. 605) who obtained the helical
spring formulas (Love, Ref. [11], Sec. 271) which relate a
wrench (M, N) (i.e., a prescribed axial torque and axial
force both applied along the axis e of the helical spring,
cf. Fig. 1) to the (constant) curvature � and torsion � of the
resulting helical equilibrium

M ¼ �½K1�ð�� �̂Þ þ K3�ð�� �̂Þ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
; (2)

N ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
½K3�ð�� �̂Þ � K1�ð�� �̂Þ�=�; (3)

where �̂ and �̂ are the (constant) curvature and torsion of
the unstressed helical configuration � ¼ �1 if the spring is
right- or left-handed, and K1 and K3 are the bending and
torsional stiffnesses of the rod. The helical spring formulas
imply that as tension N > 0 is increased monotonically
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from zero atM ¼ 0, the rotation first increases (overwind-
ing the helical axis in the same direction as the reference
handedness) and then decreases, returning to its initial
value and then unwinding (cf. Fig. 2, right panel). This
simple and quite general macroscopic behavior is no longer
widely known and may therefore appear to be surprising
and counterintuitive.

Modern molecular and biological experimental systems
require a rod model with more general constitutive rela-
tions appropriate for filaments with noncircular cross sec-
tions and with coupling between bending and twisting
strains. Here, we use a recent classification of all helical
equilibria of such uniform filaments [12,13] to obtain an

effective response theory relating the two generalized
loadings of axial force and axial torsion to the two
generalized displacements of axial translation and axial
rotation. We systematically derive the appropriate version
of the effective helical energy (1) for general elastic rods
and the associated generalized helical spring formulas,
and we show that helical equilibria may initially either
overwind or underwind when stretched, with the response
dependent upon the detail of the loading and the constitu-
tive relations.
We first summarize the Kirchhoff theory of inextensible,

unshearable, uniform rods with quadratic strain-energy
density [11,14]. A rod with arc length s 2 ½0; L� is defined
by a centerline rðsÞ and a unit vector field d1ðsÞ perpen-
dicular to r0ðsÞ ¼: d3ðsÞ (the prime denotes the s deriva-
tive). A local orthonormal basis of directors is obtained by
defining d2ðsÞ :¼ d3ðsÞ � d1ðsÞ. This director basis is re-
lated to the classic Frenet basis formed from the principal
normal �, binormal �, and tangent � ¼ d3ðsÞ vectors by
d1 ¼ � cos’þ � sin’ and d2 ¼ �� sin’þ � cos’,
where ’ is an angle defining the rotation of the vector d1

in the normal plane. Since the vectors di form an orthormal
basis, their derivatives are d0

i ¼ u� di, i ¼ 1, 2, 3, where
u is the Darboux vector, related to the curvature � � 0, the
(geometric) torsion �, and the angle ’ by u ¼ � sin’d1 þ
� cos’d2 þ ð�þ ’0Þd3. The constitutive relations of an
elastic filament must be written in the local basis. We write
u ¼ u1d1 þ u2d2 þ u3d3 with the three components
assembled into a triple u ¼ ðu1; u2; u3Þ (note the use of
sans-serif fonts for components in the director basis, which
is a standard notation in the modern elasticity literature
[14]). By defining a resultant force nðsÞ and moment mðsÞ
acting on the cross section at rðsÞ, and in the absence of
distributed body forces and couples, the equilibrium equa-
tions are n0 ¼ 0 and m0 þ d3 � n ¼ 0 which read in the
local basis

n0 þ u� n ¼ 0; (4)

m0 þ u�mþ v� n ¼ 0; v :¼ ð0; 0; 1ÞT: (5)

A wrench is defined with respect to a given fixed axis
e as N :¼ n � e ¼ n � e, M :¼ n � e ¼ m � e. The general
material response of a rod with quadratic energy is given
by a linear constitutive relation

m ¼ Kðu� ûÞ; K ¼
K1 0 K13

0 K2 K23

K13 K23 K3

0
BB@

1
CCA;

K1 � K2; (6)

where û are the Darboux components of the unstressed
shape (assumed constant), and K is positive definite.
Classic case.—Thompson, Tait, and Love consider the

special case in which the constitutive relations (6) are
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FIG. 2 (color online). Left: For the particular constitutive
relations (7), the set ofM ¼ 0 zero axial torque helical equilibria
[corresponding to Fig. 1(a)] lie on an ellipse in the curvature-
torsion plane determined by the value of �. Close to the un-
stressed helix with N ¼ 0 (point a), N > 0 equilibria correspond
to j�j> j�̂j (the case of � > 0 is shown). Initial overwinding in
extension occurs for �< 1, which is when the section of the
ellipse outside the circle centered at the origin and passing
through a has j�j> j�̂j. The set of N ¼ 0 zero force equilibria
[corresponding to Fig. 1(b)] is also shown. Depending on �, the
helix either lengthens when wound (�< 1) or shortens (�> 1).
Right: For M ¼ 0, the relative coiling angle as a function of the
axial force. For �< 1 and N > 0, the helix first overwinds, then
unwinds.
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FIG. 1 (color online). A wrench applied to a helical spring
gives rise to another helical equilibrium. Two simple questions
are to determine (a) the sign of the increment of the rotation
angle � when an axial tension is applied with no torque and
(b) whether a spring extends or contracts as a result of an axial
torque loading with no applied force.
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K ¼ diagðK1; K1; K3Þ; û1 ¼ 0; � :¼ K3=K1:

(7)

Then, as shown, for example, in Ref. [15], the only possible
helical equilibria have u1 ¼ 0, u2 ¼ �, and u3 ¼ � with
the rod loaded by a wrench (M,N) along its helical axis. By
using Eqs. (6) and (7) in Eqs. (4) and (5), the helical spring
formulas (2) and (3) are obtained. If we further specialize
our problem to the case where there is no torque M ¼ 0,
Eq. (2) reduces to a quadratic condition on the curvature �
and torsion � independent of the loading:

�ð�� �̂Þ þ ��ð�� �̂Þ ¼ 0: (8)

We define the coiling angle per unit arc length to be
� ¼ juj, so that in the unstressed state, �̂ ¼ jûj. Close
to the unstressed state, we can then express the axial
stretch z ¼ �=�� �̂=�̂ and rotation angle � ¼ �� �̂ as
a function of N:

z ¼ ðK1�̂
4 þ K3�̂

2�̂2Þ
K1K3ð�̂2 þ �̂2Þ3 N þOðN2Þ; (9)

� ¼ ðK1 � K3Þ�̂2�̂

K1K3ð�̂2 þ �̂2Þ2 N þOðN2Þ: (10)

The first equation gives the linear approximation at the
origin to the graph in Fig. 2(b), which demonstrates that a
helix will initially overwind when pulled from its mini-
mum energy state if and only if �< 1. We remark that if
the filament is formed from a three-dimensional homoge-
neous linearly elastic material with Poisson ratio in
[0, 1=2], e.g., standard metals, then � 2 ½2=3; 1�, so that
initial overwinding in response to positive tension always
arises for simple helical springs, a slightly surprising but
yet completely classic effect. Equation (9) defines an
effective Hooke constant for small extension.

Geometrically, Eq. (8) describes an ellipse in the
curvature-torsion plane, which allows us to move beyond
the linear analysis. For given material parameters �, �̂, and
�̂, all M ¼ 0 helical solutions lie on this ellipse and the
helix always extends when pulled (that is, j�j> j�̂j for
N > 0). A point on the ellipse corresponds to overwound
configurations with respect to (�̂, �̂) when it lies outside the
circle centered at the origin and of radius �̂. It follows that
for N > 0, a helix will initially overwind when pulled from
rest if and only if �< 1. Further, the maximum overwind-
ing (point b in Fig. 2) is obtained when the ellipse (8)
intersects the hyperbola 2ð1� �Þ��þ ��̂�� �̂� ¼ 0,
and the coiling angle returns to its original value when
the ellipse reintersects the circle �2 ¼ �̂2 (corresponding
to the point c).

Analogously, we can study the particular loading N ¼ 0
when a helix is subject to a pure axial torque M � 0,
corresponding to the experiment in Fig. 1(b). Again, an
analysis of the relative position of the level set curveN ¼ 0

with respect to both the circle passing through the
unstressed state (constant angle �) and the line through
the unstressed state and the origin (constant pitch p)
reveals that for �< 1, initially unstressed helices always
extend when overwound and shorten when unwound.
General case.—For the general constitutive laws (6),

all helical equilibria can still be classified [12,13].
Generically, there are helical equilibria with both the
Darboux vector u and u constant. Curvature, torsion,

and radius are given by � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22

q
, � ¼ u3, and R ¼

�=juj2. Let e ¼ �u=juj be a unit vector along the helical
axis such that e � r0ðsÞ � 0, with � ¼ þ1 for right-handed
helices and u3 ¼ � � 0 (� ¼ �1 for left-handed helices).
The pitch per unit arc length along e is p ¼ ju3j=juj with
the number of helical periods being L�=2� for a helix
segment of arc length L (with � ¼ juj as before). When
one helical configuration is deformed into another, it
will overwind if � :¼ �2 � �1 > 0 and unwind if � < 0
(respectively, increasing or decreasing the number of hel-
ical repeats for a given arc length). The constant triples u in
Darboux space lie on a quadric QðuÞ ¼ 0 (see the
Supplemental Material [16]). This quadric (apart from
degenerate cases, including the classic case discussed
above in which the quadric degenerates to a plane) is a
one-sheeted hyperboloid (see Fig. 3). Similarly, the wrench
(M, N) defines two other manifolds in Darboux space,
given by the level sets of N ðuÞ :¼ N ¼ n � e ¼ ��juj
and MðuÞ :¼ M ¼ m � e ¼ �u �m=juj, where Ne ¼
nðLÞ and Me ¼ mðLÞ � NrðLÞ � e.
We now have a purely geometric problem: for a given

wrench (M, N), the observed response (p, �) is determined
by the intersection of the level sets of the functions N ðuÞ
and MðuÞ with the hyperboloid QðuÞ ¼ 0. It is these
intersections of level sets which provide the generalized
helical spring formulas, but now the explicit expressions

FIG. 3 (color online). Left: The set of equilibria for a helix
under pure axial force (M ¼ 0) is the intersection of the hyper-
boloid H (yellow region) and the ellipsoid E (red region). The
set of equilibria without winding � ¼ 0 is the intersection of the
hyperboloid H (yellow region) and the sphere S (blue region).
Right: For the particular case shown, the helix initially unwinds
when pulled since the tangent tE to the curve of equilibria uN

(red curve) oriented toward N > 0 lies within the sphere S,
whose intersection with H is shown as the blue curve.
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are not simple. Nevertheless, we can reconsider the prob-
lem of rotation in pure axial force close to the unstressed
N ¼ M ¼ 0 helix û: does a helix over- or underwind for
M ¼ 0 and N > 0 and small? The required argument is in
essence the same as the one in the (�, �) plane but now on
the quadric QðuÞ ¼ 0 embedded in three-dimensional
Darboux space. The condition M ¼ 0 restricts the solu-
tions to lie on the intersection of the quadric Q ¼ 0 with
an ellipsoid E ¼ 0 (shown in red in Fig. 3) that generalizes
the ellipse obtained in the classic case. Through the use of
this geometric approach (see details in the Supplemental
Material [16]), the explicit and general criteria for initial
overwinding in terms of only the material parameters
can be computed to be �û � ðKû� hÞ> 0, where
h ¼ ð�K1û2; K2û1; K23û1 � K13û2Þ.

Effective constitutive laws.—The fact that helices under
pure axial force can either over- or underwind is a simple
manifestation of the nonlinear response of helical struc-
tures under loads. In particular, while the constitutive
relations (6) are linear, both the geometry of the helices
and the balance laws (4) and (5) are nonlinear.
Nevertheless, it is possible to develop an effective linear
response theory close to any given helical equilibrium via
an appropriate Taylor expansion. Specifically, select a
particular helical equilibrium u� lying on the hyperboloid,
and denote all associated quantities at this equilibrium as
M�, N�, etc. Then, the linearization of the wrench (M, N)
as a function of the strains leads to a linear response
relation of the form

M

N

" #
¼ M�

N�

" #
þ A� B�

B� C�

" #
�

z

" #
; (11)

where � ¼ juj � ju�j, and z ¼ u3=juj � u�3=ju�j. A no-

table point is that the coefficient matrix is always sym-
metric and is positive definite, at least in a neighborhood
of the unstressed state û, and so can be regarded as an
effective stiffness matrix. The coefficients A�, B�, and C�
are lengthy but explicit expressions of the material coef-
ficients and the equilibrium values as described in the
Supplemental Material [16]. Accordingly, for small dis-
placements around any equilibrium helical solution, one
can replace the helical structure by a simplified, effec-
tively cylindrical, structure whose configuration is given
by the two displacements � and z, and with the effective
energy

E ¼ E� þ ðM� �MÞ�þ ðN� � NÞz
þ 1

2
ðA��2 þ 2B�z�þ C�z2Þ: (12)

The first term is the total energy of the system at the
configuration u�, the second and third terms are work
associated with the increments in loads and displacements
from u�, and the quadratic form in the displacements is
the elastic energy of the effective system. This effective

energy is an extension to general equilibria of the effec-
tive energy (1), with the main difference being that the
coefficients A�, B�, and C� depend on the equilibrium u�,
or equivalently, the overall load applied to the system.
This behavior is routinely reported in experiments, where
it is observed that the effective moduli of DNA vary with
force [17]. In the particular experiment with no axial
torque, the coefficients B� will change sign as the spring
inverts its winding, leading to the observed nonmonotonic
behavior. Note also that this effective energy can provide
a reasonable approximation to the statistical mechanics of
the system close to u�, provided that the system is in the
regime of relatively high tensile loads where fluctuations
of the DNA due to interaction with the solvent can
reasonably be neglected. Finally, we remark that provided
the coefficient matrix in Eq. (11) satisfies appropriate
invertibility conditions, the energy (12) can be regarded
as a function of any two of the four variables (M, N, �, z),
in order to model experiments where soft, hard, or hybrid
loadings are applied.
We remark that experiments will only access helical

equilibria that are stable in an appropriate sense. For the
purposes of statistical mechanics, the appropriate notion of
stability is whether a specific equilibrium is in fact a local
minimum of the associated total energy, which in turn
depends on the precise form of loading. In the case of
complete hard loading, where the orientation and location
of each end are controlled, the isoperimetric conjugate
point tests for elastic rods, as described in Ref. [18], can
be applied to the case of helical equilibria. Each point on
the hyperboloid in Fig. 3 corresponds to a helical equilib-
rium of arbitrary length, and it is a standard result of the
calculus of variations that for fully clamped boundary
conditions, any sufficiently short helical segment will be
a local minimum. For each point on the hyperboloid, the
conjugate point computation can be numerically imple-
mented to compute a critical length (possibly infinite),
beyond which the equilibrium ceases to be a local mini-
mum, but we are unaware of any simple general charac-
terization of the critical length.
This Letter provides a systematic way to construct two-

dimensional effective energies for tweezer experiments
when the underlying polymer constitutive relations are
known. In particular, it identifies the source of nonmono-
tonic behavior in simple wrench experiments. Given the
geometric framework constructed here, a natural next step
is to consider the inverse problem of extracting approxi-
mations to the constitutive relations (6) from sets of mea-
surements of the four effective coarse-grain axial load and
displacement variables.
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